On polynomials that are not quite an identity on an associative algebra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Identity of Jack Polynomials

In this work we give an alterative proof of one of basic properties of zonal polynomials and generalised it for Jack polynomials

متن کامل

Polynomials That Are Positive on an Interval

This paper discusses representations of polynomials that are positive on intervals of the real line. An elementary and constructive proof of the following is given: If h(x), p(x) ∈ R[x] such that {α ∈ R | h(α) ≥ 0} = [−1, 1] and p(x) > 0 on [−1, 1], then there exist sums of squares s(x), t(x) ∈ R[x] such that p(x) = s(x) + t(x)h(x). Explicit degree bounds for s and t are given, in terms of the ...

متن کامل

Two Statements about Infinite Products that Are Not Quite True

The first half of this note concerns modules; so let R be a nonzero associative ring with unit. A countably infinite direct product of copies of R, which we will usually regard as a left R-module, will be written R (ω denoting the set of natural numbers); the corresponding direct sum, i.e., the free left R-module of countably infinite rank, will be written ⊕ ω R. Here, now, are the two not-alwa...

متن کامل

Sedation: not quite that simple.

The number of diagnostic and therapeutic interventions performed under sedation is growing rapidly. While providing patients with an improved experience secondary to anxiolysis, analgesia, and amnesia, sedation also puts them at risk for associated cardiorespiratory and other complications. Several medications are available for sedation, all of which have unique advantages and disadvantages. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2019

ISSN: 0021-2172,1565-8511

DOI: 10.1007/s11856-019-1937-8